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Abstract
Spatio-temporal data ranging from 1-D time series to 4-D measurements and simula-
tions have become of central importance in terms of both data volumes generated and
the need for ubiquitous high-level information in a variety of applications.  Manage-
ment of the large variety of data and their combination, however, poses high chal-
lenges wrt. structural variety of multi-sensor data, evaluation complexity, and the
sheer data volumes on hand.

The multidimensional database management system (DBMS) RasDaMan has been
developed to provide the same quality of service for the multidimensional raster data
category as is available on alphanumeric data since long. Based on a strict separation
of external retrieval facilities and internal data management, the client/server system
accomplishes storage, retrieval, and manipulation of raster data of any size and di-
mension. An SQL-based query language allows to phrase queries up to the complexity
of the Discrete Fourier Transform.

Internally, retrieval is supported through extensive query and storage optimization.
The streamlined query engine optimizes disk access and networks transfer times and
handles data format and compression issues in a transparent manner.

As RasDaMan is unlimited in terms of dimensions, sensor data can be immediately
coupled, e.g., with a data warehouse residing in the same physical database. The
DBMS is fully operational and being marketed.

In this contribution, we present RasDaMan in the context of remote sensing and show
how multi-sensor queries can be formulated and processed efficiently.

1 Introduction
Data capture in airborne remote sensing results in a variety of raster data ranging from simple photo-
graphic 2-D images of the earth surface to complex multidimensional, multi-band data generated by radar
instruments. The recorded data has common key properties: Data items can be modeled as a multidimen-
sional array over an arbitrary base type and they tend to be large, both in terms of individual size and in
terms of quantities arising. The term multidimensional discrete data (MDD) has been coined for this
information category. In recent years more and more remote sensing data is continuously generated by an
ever increasing number of sensors and platforms. Technological advances in storage technology make it
feasible to persistently store huge amounts of data.

                                                          
1 Presented at the Fourth International Airborne Remote Sensing Conference and Exhibition/21st Cana-
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The software for managing this large amounts of multidimensional data, however, has been lagging be-
hind. It would be desirable to have easily accessible databases storing this valuable data online. Com-
monly storage is done in files on a large number of tapes involving a lot of time and effort to retrieve the
data needed for processing and analysis. The challenge for database technology is to offer versatile, high-
level MDD services to enable efficient access to the sensor information. Remote sensing data is particu-
larly challenging for MDD management in several respects. A wide variety of data has to be processed
jointly in many cases; e.g., projecting a multi-band satellite image on top of a 3-D representation of a
DEM. This requires MDD of different dimensionalities to be handled.

Current database technology is far from being able to meet this challenge. State-of-the-art relational da-
tabase management systems (DBMSs) can only store MDD as unstructured BLOBs (binary large objects)
without any support for high-level operations such as subselects, access to bands, or operations on MDD.
New DBMS technologies like object-relational DBMSs (e.g. Informix Universal Server [Ston-95]) and
object DBMSs [Loom-95] (e.g. O2 [Banc-92]) offer the possibility to implement user defined data types
managing remote sensing data. Both technologies cannot offer a high-level query language and special-
ized storage structures for MDD.

Image processing systems, such as EASI/PACE or ERDAS IMAGINE, are widely used in remote sens-
ing. These systems, however, lack the storage capabilities provide by database technology. Their ad-
vanced image processing algorithms exceed functionality offered by an MDD database system. A close
coupling between an image processing system and a specialized DBMS could offer the benefits of both
technologies.

In the RasDaMan project, a specialized raster DBMS was developed offering the same quality of service
on MDD as it is available on conventional alphanumeric data. On the logical level, a MDD model is of-
fered which allows structure definition of multidimensional arrays with fixed or variable bounds as well
as retrieval and manipulation through both an ODMG-conformant [Catt-96] C++ API and a declarative
query language enhancing standard SQL [ISO-92]. On the physical level, a specialized MDD storage
manager is employed together with algebraic MDD query optimization. One goal of the RasDaMan proj-
ect was, by providing high-level raster data management services, to make application development
faster, less error-prone, and easier to maintain; as a consequence of the resulting lightweight applications,
less expensive client hardware can be employed. In this contribution, we demonstrate how a raster
DBMS like RasDaMan can be applied in remote sensing applications. In Section 2, the RasDaMan
DBMS interface is presented using example queries on remote sensing data. Storage of MDD is dis-
cussed in Section 3. Finally, Section 4 gives a conclusion.

2 Cross-dimensional Raster Data Manipulation
On the conceptual (user) level, MDD definition, manipulation, and retrieval is done in a declarative style
through a data definition language, RasDL, and a query interface, RasQL. A C++ API, RasLib, accom-
plishes access to the database from within a programming language, including classes and methods for
procedural data definition (the RasDL processor actually is a client using RasLib) and RasQL query in-
vocation. In this Section, we introduce central concepts of these two interfaces. Window dumps shown
have been produced using the RasDaMan visual front-end rview (another RasLib client) which allows
interactive database querying and offers various visualization techniques.

2.1 MDD Definition
Arrays can be built upon any valid C/C++ type, be it atomic or composed ("struct"). Syntax is based on
ODMG’s definition language, with arrays defined through a template marray<b,d> which is instantiated
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with the array base type b and the array extent d (in RasDaMan called the array’s spatial domain). Spatial
domain specification - the only syntactic extension to ODMG’s ODL - contains lower and upper array
bound for each dimension. Thus, a database collection LandsatCollection over Landsat images can
be defined by

typedef struct { unsigned short band1, ..., band7; } LandsatPixel;
typedef marray< LandsatPixel, [ 1:5760, 1:7020 ] > LandsatImage;
typedef set< LandsatImage > LandsatCollection;

An asterisk "*" in any position denotes a free boundary which disables range checking for that particular
bound during object lifetime. Thus, a set of 4-D climate simulations, each one consisting of a time series
of 16x32x64 3-D atmospheric values over an unspecified time range, can be described by

typedef marray< float, [ 1:*, 1:16, 1:32, 1:64 ] > ClimateSimulation;
typedef set< ClimateSimulation > ClimateCollection;

The RasDL processor takes such MDD definitions and generates both the data dictionary information
and a C++ header file for proper application interfacing. Once the database structure is defined this way,
the database can be populated and searched.

2.2 MDD Search and Manipulation
The RasQL query language is based on standard SQL92. Like
SQL, a query returns a set of items (in this case multidimen-
sional units) taken from some database collection. For choosing
elements from the collection as well as for tailoring each MDD
element from the result set, multidimensional operators are
available. We will look at the geometric operators (which per-
form a cutout from an MDD), induced operations (which si-
multaneously change all the values of an MDD), and aggrega-
tion (which deduces summary information). Furthermore, data
format conversion handling will be shown.

2.2.1 Operations on Cell Subsets
This includes trimming (rectangular cutouts) and section (ex-
traction of lower-dimensional subarrays). It is accomplished by
attaching a domain specification to an MDD which, for every
dimension, states the interval or section point, resp.

Example 1: The following query retrieves a 2000x3000 cutout
from all Landsat images in LandsatCollection:

SELECT c[ 1001:3000, 1001:4000 ]
FROM   LandsatCollection AS c

A section extracts an (n-1)-D layer from an n-D MDD. To this
end, the spatial domain specification contains for each dimen-
sion the section position rather than a trim interval. Trim and
section can be combined freely within one expression; obvi-
ously, each section indicator reduces the result dimension by one.

Example 2: Let us assume that ClimateCollection contains one 4-D cube. The following query,
then, extracts a 3-D volume at time frame 1020 from this cube:

SELECT c[ 1020, *:*, *:*, *:* ]
FROM   ClimateCollection AS c

Fig. 1: 3-D section through 4-D
climate simulation; data courtesy of
DKRZ (German Climate Computing
Centre)



www.manaraa.com

Notably, due to server-based query processing only the result set - 128 kB in this case - will be trans-
ferred to the client. As a further example for a cross-dimensional query capabilities, a height profile is
extracted from a 2-D DEM (see Fig. 2 below).

Example 3: Select a height profile at x-coordinate 400 from the DEM in the collection rocckies:
SELECT d[ 400, *:* ]
FROM   DEMCollection AS d

2.2.2 Induced Operations
For each operation available on the MDD cell type, a corresponding so-called induced operation is pro-
vided which simultaneously applies the base operation to all cells of an MDD. Both unary (e.g., record
access or contrast enhancement) and binary operations (e.g., masking an image) can be induced.

Example 4: The query "Band 3 of all Landsat TM images, with intensity reduced by 10" is written as
SELECT c.band3 - 10
FROM   LandsatCollection AS c

Example 5: Classification, i.e. mapping of cell values to other values, is a common operation when
dealing with remote sensing data, but also in other areas, such as business data analysis. Doing this in the
DBMS on a potentially large set of images greatly eases the programmer’s task. Our example (Fig. 2)
classifies 8-bit DEM data of the Rocky Mountains into four distinct height levels ranging from 0 to 3.

SELECT (d >= 64  AND d < 128)*1 + (d >= 128 AND d < 192)*2 +
       (d >= 192 AND d < 256)*3
FROM   DEMCollection AS d

Example 6: Fig. 3 shows the three visible bands of a satellite view on the South Spanish coast. The
query below masks out all pixels from this image which are considered non-vegetation due to their color
value.

SELECT c * (c.green > 130 AND c.red < 110 AND c.blue < 140)
FROM   LandsatCollection AS c

Figure 2: Classification of a 2-D DEM (left) into 4 elevation levels (middle) and
selection of a 1-D height profile (right).
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Obviously, more complex algorithms have to be used in a real-live applications. However, even a simple
algorithm such as the one above can be useful to preselect relevant images, thereby significantly reducing
network traffic and client load.

In general, MDD expressions can be used in the SELECT part of a query and, if the outermost expression
result type is Boolean, also in the WHERE part. Therefore, we need a means to ”collapse” MDD-valued
expressions, such as induced comparisons, into scalar Boolean values. This is accomplished through
condensers.

2.2.3 Deriving Summary Data
Condenser operations - in standard SQL called aggregation - allow to summarize over all values from
some spatial domain. A number of condensers are available, such as sum_cells, count_cells,
max_cells, min_cells, and avg_cells over some cell area, as well as some_cells and
all_cells quantifiers.

Example 7: The following expression counts all cell occurrences containing values between 17 and 42
(semithresholding).

count_cells( a > 17 AND a < 42 )

Example 8: The query "Identifiers of all Landsat images which, according to the above criterion, con-
tain more than 70% vegetation." can be formulated as

SELECT oid( c )
FROM   LandsatCollection AS c
WHERE  count_cells( c.green > 130 AND c.red < 110 AND c.blue < 140 )
       / count_cells( c )
       > 0.7

To process such queries efficiently, two system features have received particular attention. First, internal
optimizations take care that, regardless of the actual query complexity, each cell will be touched at most
once. Second, only the object identifiers (OIDs) are actually moved to the client, leaving the bulk load on
the server, i.e., close to the data source.

Figure 3: Searching for vegetation (right) in a visible band image (left);
image courtesy of Spanish National Geographic Institute.
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2.2.4 Partial Updates
Because of the large size of the data items, we feel that, despite ODMG OQL includes only retrieval,
support for partial updates is useful, too. To this end, the SQL update statement has been included in
RasQL with an extension to specify an MDD part on the left hand side of an assignment clause.

Example 9: Inserting half of band5 sensor data into an existing Landsat image can be expressed as
UPDATE LandsatCollection
SET    img[ *:*, 1:3510 ].band5 ASSIGN <spectral band sensor data>
WHERE  oid(img) = ...

2.2.5 Data independence.
Data independence frees the application from the need to cope with different image formats. By default,
RasDaMan delivers MDD in the client machine’s hardware representation for arrays, ready for further
processing. On request, MDD are accepted or delivered using a particular data exchange format indicated
in the query. Of course, the format must be able to host the structure to be encoded – a seven-band mul-
tispectral image cannot be cast into GIF, whereas a single band can.

Example 10: The application reads a Landsat image in BIL format, say, from tape and provides it to the
query through formal parameter $1, which is replaced by a user-specified filename in the frontend.
Function inv_bil() converts this into the database internal representation prior to storing it:

INSERT INTO LandsatCollection
VALUES ASSIGN inv_bil( $1 )

Conversely, a single band of the Landsat image stored earlier is delivered in TGA format by applying
function tga():

SELECT tga( c.band3 )
FROM   LandsatCollection AS c

Besides the operators shown there is a set of general operations based on a formal algebraic framework
[Bau-99] which allows to perform signal processing up to the Discrete Fourier Transform.

2.3 Data Access through Programming Language
Application programmers use the ODMG-conformant C++ library RasLib to store, manipulate, and re-
trieve persistent MDD in the RasDaMan DBMS. For convenience, some MDD functionality is also
available in RasLib to perform operations such as trimming and section of arrays on client side. A tem-
plate class for MDD objects has been implemented to integrate this capability in the C++ type system.
These MDD objects support the classical C++ way of accessing arrays by overloading operator[].
Objects of such a class can be made persistent by inserting them into persistent DBMS collections.

Recall that MDD objects always are delivered in the client's main memory format (except when a con-
version function such as tiff() has been applied). A method allows to retrieve a pointer to the C++
array, thereby giving access to MDD with C++ functions (albeit this sacrifices the multidimensional se-
mantics as the low-level C++ array concept has to be used3). This way, tight integration of RasDaMan
with C++ class libraries, e.g., imaging packages, is possible. Here is a brief code example for Landsat
image traversal following its retrieval:

                                                          
3 “The built-in arrays [of C/C++] are a major source of errors – especially when they are used to build
multidimensional arrays.“ [Str-97]
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typedef struct { unsigned short band1, ..., band7; } cell_type;

r_Marray<cell_type> mdd;
cell_type* p;

unsigned short maxVal = 0;

...
p = mdd.get_array();

for (i = 0; i++; i < 5760*7020) {

    maxVal = max(maxVal, (p++)->band3);
}

3 Storage Model
Queries are evaluated close to the bulk data source, i.e., on the server
[Furt-97]. Storage and access optimization also take place there. The un-
derlying storage model is based on multidimensional tiling. Maintenance
of large images by subdividing them into tiles (also called mosaics) as the
unit of access has a long tradition in imaging. In the database community
subdivision of images into equally sized tiles was suggested in [Tamu-80].
RasDaMan has generalized this concept to the n-dimensional case and
arbitrary tiling (cf. Fig. 4), supporting various strategies such as user-
defined hot spots with system-generated completion of tiling and tiling
based on access frequencies [Furt-99]. Tiles also form the units for lossless
transparent data compression. To quickly determine the tiles affected by a
particular query, a specialized multidimensional index is maintained.

RasDaMan makes use of a conventional DBMS to actually store arrays and the associated meta informa-
tion. As the array semantics is resolved to a simple "set of blob" semantics, only very simple services are
required from the base DBMS. The peculiarities of the base DBMS are encapsulated in a driver interface.
This prepares RasDaMan for easy portability between different base DBMSs and storage systems. As a
matter of fact, RasDaMan first has been implemented based on the ODBMS O2, and later has been ported
to relational systems such as Oracle.

4 Conclusion
With the ever-increasing need to maintain growing sets of sensor data in their originally acquired form,
geo information providers are faced with severe information management problems. Furthermore, be-
sides 2-D imagery of varying resolution and sensor types, additional information sources have to be re-
garded delivering 1-D time data as well as higher-dimensional entities, such as 4-D climate data. As these
all share common underlying properties, namely that of arrays in a programming language sense, it is
highly feasible to maintain them in a DBMS which supports this unifying structuring paradigm.

Responding to this research issue, RasDaMan has been designed to offer versatile retrieval functionality
on raster data of any size and dimension. By extending standard SQL with operations on multidimen-
sional entities, queries can be formulated flexibly and ad hoc. We feel that a particular advantage is that
the same mechanisms apply for all dimensions and that various dimensions can be handled within one
and the same query; frequently queries can even be phrased without explicitly mentioning the domain,
thereby allowing to set up general query libraries. Storage and access optimization are done transparently
to the user, but under control of the database administrator. This makes RasDaMan suitable as a raster
management component in advanced GISs.

Fig. 4: arbitrary 2-D tiling
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Meanwhile, RasDaMan has become a commercial product4. The server is running on common Unix plat-
forms like Solaris, HP-UX or Linux. The client API and the visual front-end are also available on Win-
dows NT. In parallel, research on RasDaMan continues; on the agenda being issues such as paralleliza-
tion and optimized tertiary storage management.
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